


0.THE DATA SET

The data set has been downloaded from an SPSS tutorial platform
(http://calcnet.mth.cmich.edu/org/spss/Prjs_DataSets.htm].

The data consists of drug information collected on 50 patients used to
perform frequency and descriptive statistics.

The variables in the data set are:

Subject: Patient;

Treatment: Two levels: 0 for Placebo and 1 for treatment group;
Age: age of patient;

Gender: Male(1] or Female(2);

Before_exp_BP: Blood pressure before experiment;
After_exp_BP: Blood pressure after experiment.

The research question: is the effect on the blood pressure with the
medicine (Treatment 1) bigger than the effect of the placebo treatment
[Treatment 0)7?

It has been decided to analyze the effect of the two different
treatments (column BJ, namely how the blood pressure does change
after treatment 0, placebo and treatment 1, medicine.

To upload the dataset to the program | have set 2 conditions, and from
the Open tab, | have uploaded the file as a CSV file with attributes (field
separation: semicolon).

In this case, the measurements for different conditions are not in
separated columns, so | have put the column Treatment as the first
condition and the After_ex_BP as the dependent value.

Additionally, | have asked the program to treat the data as continuous
since the dataset presents measures of blood pressure.

A B C D E F

1 Subject Treatment Age Gender  Before_exp BP After_exp BP
2 D1 1 65 1 103.3 80.5

3 D2 1 59 1 93.6 85.9

4 D3 1 60 292 85.2

5 D4 1 54 193 87.8

6 D5 1 65 1954 85.3

7 Do 1 57 2 109.6 94.2

8 D7 1 69 2979 83.9

9 D8 1 62 2 96 85

10 D9 1 49 1984 86.3

11 D10 1 45 198.4 a0

12 D11 1 65 195.5 85.2

13 D12 1 62 2917 87.9

14 D13 1 64 2 98.6 84.6

15 D14 1 68 198 83.8

16 D15 1 70 2 96.4 85.5

17 D16 1 66 2 104.4 93

18 D17 1 65 1111.7 85.4
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Figure 1. The dataset NewDrug.CSV

Figure 2. Uploading the dataset on ILLMO.



T.HISTOGRAMS

After uploading the dataset on ILLMO, specifying the number of
conditions as 2, | have chosen to look at the data on histograms.
A histogram is a graphical representation of the distribution of the
data, and it is used to give a sense of the density of the underlying
distribution of the data.
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Figure 3. Quantizing the data set NewDrug.CSV

In order to facilitate the comparison of histograms between pairs of
conditions, the histogram for the selected condition is highlighted
by drawing it in a different color (red) than the histogram for the
reference condition (black], as shown in Figure 4.

Since this is a continuous dataset, the option of regular histogram
Is not interesting for the analysis as the cumulative one is. Visually
assessing such line density is quite difficult and the rendering of

regular histograms is not very informative. By default, ILLMO does

not generate regular histograms for continuous data, but this can be
overruled ticking the checkbox in front of the “Create histograms with
bin size” in the data dialog, (see Figure 3) and so quantizing the data
with a value of 0.900, provided that it is substantially smaller than 1.
Changing the bin size to a value of 0,900 also increases the LLC_Q

to a value of 34.75, which is a value that expresses a better fit of the
module compared to the LLC value without quantization (LLC= -64,24).
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Figure 4. Continuous histograms in ILLMO for the reference (in black) and selected
(in red) condition (data: NewDrug.CSV).

The LLC_Q value expresses the log-likelihood criterion value after the
quantization of the data.
While the histograms for the 2 conditions appear to be slightly
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Figure 5. Regular histograms with bin size 0.9 for continuous data (data:
NewDrug.CSV).

different, later in the report statistical modeling will be used to
establish whether or not they are significantly different. Also, for this
reason, the cumulative histogram is a better solution since it does
show better that the two conditions are different, and it is easier to
interpret the difference in the data, thing that is difficult to assess only
from the regular histograms.

Already from the cumulative histograms, it is possible to notice a
difference in the two variables analyzed.
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Figure 6. Cumulative histograms with bin size 0.9 for continuous data (data:
NewDrug.CSV).

For this analyzed example, we have a data set with two conditions, with
the same standard deviation (o= 3,2051) and two different averages
(u1= 92,1864 and u2=85,7786).



2. DISTIBUTION & MULTIMODEL
COMPARISON

The default choice from the program is the Gaussian model, with an
LLC_Q=34,75 in this case, and | can assess which is the model that fits
my data the best with a multi-model comparison.

The Gaussian model for this data, after the quantization of 0,9 done
to the dataset, has an LLC_Q=34,75, and with the comparison, | will
assess if there is a model that fits better my data based on the LLC
value and on the AIC value.

The multi-model comparison will help the choice for the best fitting
model to the data.

To assess if a model does fit the dataset, we use two different
parameters that a model needs to accomplish a good fit to the
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Figure 8. Multimodel comparison history showing the variatios of LLC value and
AIC value for each model analyzed.

observed data, the log-likelyhood criterion, that is the value for how
well one or more probability distributions, which we refer to as the
model, fit to an equal number of observed histograms. The goodness
of fit is however only one aspect of the quality of a model, so we also
analyze the Akaike Information Criterion (AIC), which combines the
llc of a model with the number of parameters in a model into a single
quality score.

In this case, different models have been analyzed, such as:

1. Normal Gaussian (LLC=34.7542, AIC=41.2759)

2. Laplace (LLC=28.539, AIC=35.0607)

3. Wide Gaussian (LLC= 44.4819, AIC=51.0037)

4. Student T (LLC=29.2143, AIC= 35.736)

5. Laplace (LLC=28.539, AIC= 35.0607).

The conclusion is that based on LLC value and AIC the best fit has
been found in the Laplace model, and on the analysis done to the
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Figure 9. In this case changing the standard deviation from constant across the
conditions to varies between the conditions does not increase the fit of the model,
and instead it will increase the DOF form 6 to 8 generating more parameters.

effect size, that I will show later in the report.
From the history model in Figure 7 and the model shown in Figure 8,
we can define that the Laplace model is the one that fits better the

dataset, with an LLC value of 28,74 and an AIC value of 35.2632 (Figure
10).
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Figure 10. The cumulative histograms with the Laplace distribution for the
data: NewDrug.CSV.

To optimize the model and see if it possible to have a better fit, | have
changed the standard deviation from constant across conditions to
varies between conditions. In this case, as it can be seen from Figure
9, this change does not provide a better fit, and instead, it increases
the Degree of Freedom from 6 to 8, having more parameters in the
analysis.




probabilities (nsel:areen)
0.25

0.2

LT
-0.05

7n 75 aQn 95 an a5 ANNAN&44n
observed data value

Figure 11. Thurstone for single trial model, good to predict the effect size and
to show the difference in the avarages, that is important and correlatd to my
effect in this case.

Even though the Gaussian distribution would have been an easier
choice for my dataset, and also easier to generalize the selection of
the model to other similar datasets, | have decided to maintain the
Laplace distribution after plotting the Thurstone of the single trial
model, since it is better to predict that the effect size is significant
because there is not a big overlapping between the curves.
Moreover, the Thurstone does show that there is a visible difference
between the two averages, important to analyze the effect size.

Once the model has been selected, we can proceed with statistical
inference analysis.



3.STATISTICAL INFERENCE

Log-likelihood function and profile

The LLF, likelihood function, is a function of the parameters of a
statistical model given data. Likelihood functions play a key role in
statistical inference, especially methods of estimating a parameter
from a set of statistics.

The LLF shows the increase in LLC for average values in the
neighborhood of the optimal value.

Confidence intervals

The confidence interval is the range of values surrounding the
estimated value for a parameter that is expected to contain, with a
probability of 95%, the mean value for that parameter. is an observed
interval that potentially includes the unobservable true parameter of
interest.
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Figure 12. LLF and LLP for the avarage
of condition 1. CI(95.00%) for LL/CR
average 1, average (1) = 91.7764, CI(1) =
[90.3463,93.0415] (LLP)
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Figure 13. LLF and LLP for the avarage
of condition 1. CI(95.00%) for LL/CR
average 2, average (2) = 85.365, CI(2) =
[84.6723,86.3273] (LLP)

In this case, | have plotted the two LLP and LLF for the different
averages, as shown in Figure 12 and 13.

In this case we have for the first condition:

ul=91.7764, with 95% Cl=[90.3463,93.0415]

and for the second condition

u2=85.365, with 95% Cl=[84.6723,86.3273].
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Figure 15. Graph showing that there is
a significant difference, and so an effect
size since 0 is not comprehended.
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Figure 14. Graph showing the LLF (in
black) and the LLP (in red) for the

difference in averages in two conditions .

Effect size

From the graphs in Figure 14 and 15 we can tell that we can look for
an effect in our data.

The effect size of this dataset is

JIND = 1.38535 (effect > 1 JND]

area above ROC: 0.925266 [effect > 1 JND)

which translates into a large effect size (see Figure 16).

To complete the analysis of the effect size we have to analyze also the
ROC curve, the Receiver Operator Curve(see Figure 18).

From this analysis, we can conclude that the effect of the medicines on
the blood pressure is higher than the effect of the placebo treatment.
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Figure 16. Effect size for the data set NewDrug.CSV
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Figurel7. The laplace model does show a bigger effect size and there is a smaller
overlapping than the Gaussian distribution so it is a better selection more valuable
for data.
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Figure 18. The Receiver Operator Curve (ROC) visualizes the errors that can occur
when trying to establish the condition in which an observation was generated based
on the observation itself. The point on the ROC that is closest to the origin will be
the reported error probabilities. In this example the minimum error for individual
trials is 0.125.



